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When two gratings drifting in different directions are superimposed, the resulting stimulus

can be perceived as two overlapping component gratings moving in different directions or

as a single pattern moving in one direction. Whilst the motion direction of component

gratings is already represented in visual area V1, the majority of previous studies have

found processing of pattern motion direction only from visual area V2 onwards. Here, we

question these findings using multi-voxel pattern analysis (MVPA). In Experiment 1, we

presented superimposed sinusoidal gratings with varying angles between the two

component motions. These stimuli were perceived as patterns moving in one of two

possible directions. We found that linear support vector machines (SVMs) could generalise

across stimuli composed of different component motions to successfully discriminate

pattern motion direction from brain activity in V1, V3A and hMTþ/V5. This demonstrates

the representation of pattern motion information present in these visual areas. This

conclusion was verified in Experiment 2, where we manipulated similar plaid stimuli to

induce the perception of either a single moving pattern or two separate component grat-

ings. While a classifier could again generalise across stimuli composed of different

component motions when they were perceived as a single moving pattern, its performance

dropped substantially in the case where components were perceived. Our results indicate

that pattern motion direction information is present in V1.

ª 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Neurons in primary visual cortex (V1), having small receptive

fields, suffer an aperture problem (Wallach, 1935) for signalling
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the speed and direction of a moving line or grating. Specif-

ically, if a grating is viewed through a small aperture, there are

a number of motion directions that could correspond to the

true motion direction of the grating. The visual system deals

with this by combining the responses across many V1
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neurons, which signal ambiguous local motion cues, so that

an unambiguous global motion signal can be extracted. The

mechanism by which these responses are combined has been

extensively studied using so called plaid stimuli, created by

the superimposition of two gratings that move in different

directions. These stimuli can elicit two different percepts;

either the two separate gratings are perceived as moving in

their respective directions (component motion), or the two

gratings are perceived bound together as a plaid, usually

moving in the average direction of the two separate gratings

(patternmotion). Plaid perception can be influenced by several

factors, such as spatial frequency of the components (Smith,

1992), pattern direction (Hupe & Rubin, 2004), component

contrast and speed (Smith, 1992), and the luminance of the

intersections of the two gratings (Stoner & Albright, 1996).

It has been proposed that V1 only processes component

motion,whereaspatternmotion isprocessedathigher levels of

the visual hierarchy, particularly in area hMTþ/V5, the human

motion complex. This theory is based on various electrophys-

iological studies that have found evidence only for component

selective cells in V1, but selectivity for both component and

pattern motion in higher visual areas (Gizzi, Katz, Schumer, &

Movshon, 1990; Movshon, Adelson, Gizzi, & Newsome, 1985;

Movshon & Newsome, 1996; Rodman & Albright, 1989; Rust,

Mante, Simoncelli, & Movshon, 2006). Furthermore, several

human functional magnetic resonance imaging (fMRI) studies

using univariate statistical methods also report evidence for

pattern motion processing from V2 onwards, but not in V1

(Castelo-Branco et al., 2002; Huk & Heeger, 2002; Villeneuve,

Kupers, Gjedde, Ptito, & Casanova, 2005; Villeneuve,

Thompson, Hess, & Casanova, 2012). However, some animal

studies have suggested that the aperture problem might be

solved already in V1 (Pack, Livingstone, Duffy, & Born, 2003),

and there is some further evidence for pattern motion selec-

tivity in V1 (Guo, Benson, & Blakemore, 2004; Schmidt et al.,

2006; Tinsley et al., 2003), leaving open the question whether

and to what extent V1 might be involved in the processing of

pattern motion (van Wezel & van der Smagt, 2003).

In this study, we investigated whether pattern motion is

processed in human V1, using fMRI and multi-voxel pattern

analysis (MVPA). MVPA has been argued to offer superior

sensitivity over standard univariate methods (Haynes & Rees,

2006; Norman, Polyn, Detre, & Haxby, 2006), and has previ-

ously been used to discriminate fMRI activity patterns in

response to differences in motion direction (Kamitani & Tong,

2006; Seymour, Clifford, Logothetis, & Bartels, 2009). In theMRI

scanner, we presented two sets of pattern stimuli moving in

one of two opposite pattern directions. The stimuli were

composed of two gratings, whose orientations varied across

the sets, such that our two pattern motion directions

comprised various component motion directions. The key

analysis used in our experiments was the training of a clas-

sifier on stimuli composed of a certain pair of components,

and testing for generalisation across the set, with stimuli

composed of different components. Our predictionwas that, if

decoding in V1 were based on component motion, we should

see an increasing drop in decoding accuracy with increasing

angular differences in component motion directions between

training and test set. If however decoding in V1 were based on

the pattern direction, we would not expect to see any
significant differences between the decoding accuracies of

any of the cross-classifications, because the pattern directions

always remain constant. While our main research question

focused on V1, we performed the same analyses also in mo-

tion sensitive areas V3A and hMTþ/V5, which have previously

been reported to show high pattern motion selectivity (Huk &

Heeger, 2002), and area V2, based on reports of motion direc-

tion tuning in this area (Lu, Chen, Tanigawa, & Roe, 2010).
2. General methods

2.1. fMRI data acquisition and analysis

In two separate experiments, functional MRI data were ac-

quired using a 3 T TIM Trio scanner (Siemens, Erlangen, Ger-

many), equippedwith a 12-channel head-coil. A gradient echo

EPI sequence was used (TR: 2 sec, TE: 30 msec, flip angle: 78�,
voxel size 2.3 � 2.3 � 2.5 mm). Per run, 135 volumes for both

Experiment 1 and 2were obtained, 102 volumes for retinotopic

eccentricity mapping, 123 volumes for retinotopic polar angle

mapping, and 169 volumes for the functional hMTþ/V5 local-

iser, each containing 29 slices oriented parallel to the calcarine

sulcus, acquired in descending order. Initial volumeswere not

removed, as the scanner sent the first trigger pulse (that

started the experiment) only after T1 equilibration had

occurred. Anatomical imageswere obtained using anMPRAGE

sequence (TR: 1.9 sec, TE: 2.52 msec, flip angle: 9�).
The functional data of the pattern motion experiments

were first realigned to the mean functional image volume and

coregistered with the participant’s structural image obtained

in the retinotopic mapping session using Statistical Para-

metric Mapping (SPM8, Wellcome Department of Imaging

Neuroscience, University College London, UK). No subsequent

normalisation to a standard anatomical space or spatial

smoothing was performed. Duringmodel estimation, the data

were high-pass filtered (cut-off ¼ 128 sec). We used an

autoregressive model of order 1 [AR(1)] to account for auto-

correlation in the data. In Experiment 1, all stimuli with the

same pattern direction were modelled by one regressor in a

general linear model (GLM), thus pooling the data into two

data sets (i.e., pattern directions A and B). For the cross-

classifications in Experiments 1 and 2, a GLM was created in

which each stimulus type (i.e., different component motion

exemplars for A and B) was modelled by a separate regressor.

The canonical haemodynamic response function imple-

mented in SPM8 was convolved with a box-car function to

model the regressors. Motion parameters were included as

regressors of no interest. Our experiments were designed to

probe MVPA decoding of pattern motion directions. However,

to investigate whether any of our MVPA decoding results

could be explained by overall differences in response ampli-

tudes between pattern motion directions, we also performed

univariate region-of-interest (ROI) analyses in both experi-

ments (see Supplementary Material). The only effect relevant

to our decoding results was a significantmain effect of pattern

motion direction in hMTþ/V5 in Experiment 2, indicating a

potential coarse scale bias for pattern motion direction in this

area. No such effect was observed in any of the other ROIs,

especially not in V1, which was the area of primary interest in

http://dx.doi.org/10.1016/j.cortex.2014.04.014
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our study. In Experiment 1, no coarse scale bias for pattern

motion direction was found in any of the ROIs.

2.2. ROI definition

To localise hMTþ/V5, a standard functional localiser was

performed (Huk, Dougherty, & Heeger, 2002; Tootell et al.,

1995), in which radially moving dots were presented in block-

wise alternation with static dots. Two runs were conducted.

The hMTþ/V5 localiser data were realigned and coregistered

with the participant’s structural image obtained in the reti-

notopic mapping session. As with all the data, we did not

normalise to a standard template brain. Thus, ROIs were

created in individual subject space.AreahMTþ/V5wasdefined

by the contrast of moving versus static dots while taking

anatomical landmarks into account (Dumoulin et al., 2000). For

this region’s definition only, we also smoothed the hMTþ/V5

localiser data (5mmfull-width at half-maximum) tomaximise

signal from noise in single subject data from this small region.

Primary visual cortex (V1), area V2, andmotion area V3A were

obtained with retinotopic mapping scans using a polar angle

protocol, that used a bifield rotatingwedges stimulus (Slotnick

& Yantis, 2003), and an eccentricity mapping protocol (Engel,

Glover, & Wandell, 1997; Sereno et al., 1995). These reti-

notopy data were only realigned and coregistered to the par-

ticipant’s structural image; no normalisation or smoothing

was performed. The data were analysed with Freesurfer

(http://surfer.nmr.mgh.harvard.edu/) using standard pro-

tocols (Engel et al., 1997; Sereno et al., 1995). Voxels were

selected using functional data from an independent stimulus

localiser scan (see 3.1.3 Procedure). ROI-maskswere created by

selecting all voxels within each functionally mapped visual

area that were responsive to our stimuli in the localiser scan,

surviving a liberal threshold of p< .01 (uncorrected) using an F-

contrast. The average number of voxels in V1, V2, V3A and

hMTþ/V5was 459 (standard error of themeane SEM: 11.8), 527

(SEM: 15.6), 97 (SEM: 11), and 136 (SEM: 4.7) voxels, respectively,

in Experiment 1, and 342 (SEM: 13.6), 372 (SEM: 14.8), 77 (SEM:

5), and 141 (SEM: 6.8) voxels, respectively, in Experiment 2.

2.3. Eye movement measurements

In both Experiments 1 and 2, eye movements were recorded

with an iView Xtm MRI-LR system [SensoMotoric Instruments

(SMI), Teltow, Germany] using a sampling rate of 50 Hz. A

radius of 1.5� from fixation was defined as the fixation area, of

which movements beyond this were considered as outliers.

Data were detrended and mean-corrected to determine the

number of these outliers, and participants with eye move-

ments beyond 1.5� of fixation in more than 5% of all data

points were excluded.

A second control analysis was performed to address po-

tential optokinetic biases on classifier performance resulting

from our two pattern directions. The direction of movement

between each two consecutive data points was calculated

from the detrended and mean-corrected eye-movement data

and sorted into 30 bins.We subsequently performed statistical

comparisons between the distributions of the eyemovements

performed under the two pattern motion directions using a

KolmogoroveSmirnoff test.
3. Experiment 1

3.1. Material and methods

3.1.1. Participants
Fifteenparticipantswithnormal or corrected-to-normal vision

took part in the experiment. One subject was excluded based

on eye movement exclusion criteria (see 3.2.2 Eye Tracking).

Thus, the data of 14 subjects are presented (five male, nine fe-

male,age18e30,meanage25,all righthanded).Allparticipants

gave written informed consent to participate in the experi-

ment, which was approved by the local ethics committee.

3.1.2. Stimuli
Two sets of plaid stimuli were created, one set moving in

pattern direction A (225�), and the other moving in pattern

direction B (45�) (Fig. 1). The plaid stimuli were composed of

two sinusoidal gratings, but the angle between the gratings’

motion vectors (a), reflecting their respective motion direc-

tion, could be either 60�, 90�, 120�, or 150�. Thus, for the two

opposing pattern motion directions, a total set of eight

different types of plaid stimuli were generated, with four

possible angles defining the components’ motion directions

(a) (Fig. 1). The individual component gratings had a spatial

frequency of .5 cycles per degree (cpd) and a speed of 1 cycle/

sec. Thus, the resulting plaids differed in speed, but this was

matched across both set A and B. The plaid stimuli were

presented within a centred annulus, with a diameter of 13� of
visual angle. The surrounding background had a luminance of

1888 cd/m2. The reported luminance values in both experi-

ments are comparably high due to the brightness of the pro-

jector at the scanner and the additional gamma correction we

performed. The centre of the annulus, in which a fixation

cross was presented, had a diameter of 3� to facilitate fixation

without optokinetic nystagmus. This was also important for

allowing a clear delineation of retinotopic responses by

avoiding stimulation of the foveal confluence region.

3.1.3. Procedure
During all fMRI runs, participants were required to fixate and

detect a random colour change of a fixation cross in the centre

of the screen. Subjects were also required to respond to a

speed change of the plaid stimuli, which occurred at random

time intervals throughout each block. These tasks were

included to improve fixation and enhance subjects’ attention

to the plaid stimuli, respectively. The scanning session started

with a structural scan (MPRAGE), during which participants

were presented with two short training runs to become

familiar with the stimuli and behavioural tasks. During each

run, each plaid stimulus was presented three times, for a

duration of 10 sec with an inter-trial interval of 1 sec. The

stimuli were presented in a pseudo-randomised order, such

that stimuli with the same pattern motion directions were

never presented more than twice in a row, reducing possible

adaptation effects. After 10 runs, one additional stimulus

localiser run was presented in which each plaid stimulus,

presented twice in total, was followed by 10 sec of fixation.

This allowed us to restrict our classifier analysis to those

voxels within each ROI that were generally responsive to our

http://surfer.nmr.mgh.harvard.edu/
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Fig. 1 e Stimuli and analysis of Experiment 1. Plaid stimuli with two pattern directions (A and B), composed of gratings with

a ranging from 60� to 150�, were presented in pseudo-randomised order. A classifier was trained on pooled data sets to

discriminate between pattern direction A and B (a). Subsequent cross-classifications were performed by training on stimuli

with the same a and testing on stimuli with a different a, with all possible combinations of stimulus pairs; (b) shows one of

the possible combinations.

c o r t e x 5 7 ( 2 0 1 4 ) 1 7 7e1 8 7180
stimuli. Standard ROI localisers were run in separate scan

sessions. Seven participants were not available for the ec-

centricity mapping session, so V3A could only be defined in

the remaining seven participants. V1 and hMTþ/V5 were

defined in all 14 participants.

3.1.4. Multi-voxel pattern analysis (MVPA)
MVPA was performed using the Decoding toolbox (Görgen,

Hebart, & Haynes, 2012), which implements LibSVM soft-

ware (http://www.csie.ntu.edu.tw/wcjlin/libsv). In a first step,

the data were split into two sets by modelling all stimuli with

the same pattern directionwith one regressor for each run in a

GLM, thus pooling stimuli across different component di-

rections (see 2.1 fMRI Data Acquisition and Analysis). A clas-

sifierwas then trained on the beta values corresponding to the

two pooled data sets to distinguish between the two pattern

motion directions (Fig. 1). It is important to note here that by
pooling the responses to stimuli composed of different com-

ponents, the classifier is forced to ignore component motion

information to discriminate the two data sets. Specifically,

because the stimuli relating to each data set contained plaids

with components moving in various directions, using

component motion information to discriminate the two data

sets would be uninformative to a classifier. Hence, above-

chance decoding of the two data sets would not result from

component motion decoding. Classifier performance was

tested using a leave-one-run-out cross-validation approach.

Training was carried out on all but one run, which served as

the test data. This was repeated 10 times until all runs had

served as a test run once. The decoding accuracy was aver-

aged across cross-validations and permutation testing was

conducted to determine the significance at the group level as

described by Stelzer, Chen, and Turner (2013). This method

was also used and described in our previous study (van

http://www.csie.ntu.edu.tw/%7Ecjlin/libsv
http://www.csie.ntu.edu.tw/%7Ecjlin/libsv
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Kemenade et al., 2014). We provided the classifier with all

possible combinations of label assignments for each subject

and decoded. Then, we randomly selected one of these

decoding accuracies from each subject and calculated the

average decoding accuracy. This procedure of random selec-

tion and calculation of average decoding accuracy was

repeated 10,000 times. A cut-off of 95%was used, based on the

resulting distribution of average decoding accuracies, to

determine the significance of our results (van Kemenade et al.,

2014; Stelzer et al., 2013).

To further probe whether classifier performance was

driven by pattern or component motion information, we

assessed whether the extent to which a classifier could

generalise across different pattern motion stimuli depended

on the similarity of their components. We created a new GLM,

in which each stimulus condition was modelled by a separate

regressor for each run (see 2.1 fMRI Data Acquisition and

Analysis). As in the previous analysis, a classifier was trained

on the beta values to discriminate the two pattern directions.

However, this time we trained the classifier on stimuli with a

certain a, for example 60�, and tested on stimuli with another

a, for example 90�. If the classifier used pattern motion infor-

mation to discriminate the two training data sets, it should still

be able to decode the pattern direction regardless of the angle

between the components in the test data sets. However, if the

classifier used component motion information, decoding ac-

curacy should decrease as the difference in a between training

and tests becomes larger. We based this hypothesis on the

current knowledge of population tuning curves of direction-

selective cells; the more the motion direction of a stimulus

differs from the preferred direction, the less the cell is

responsive to this stimulus (Movshon et al., 1985). Studies

measuring tuning curves of direction-selective cells in V1

report a range of tuning widths, but usually no greater than

about 90� (Gizzi et al., 1990; Movshon et al., 1985; Movshon &

Newsome, 1996). Therefore, cross-classifications between

plaid stimuli with a ¼ 60� versus a ¼ 150� should result in the

weakest decoding performance if the classifier uses compo-

nentmotion information tomake its decision. Furthermore, as

the difference in a gets larger between training and test, a

graded decline in performance should be observed. The cross-

classification procedure was performed on all possible com-

binations of stimulus pairs. The resulting decoding accuracies

from these cross-classificationswere then pooled according to
Fig. 2 e Decoding performance Experiment 1. Chance level is 50

directions could be decoded significantly above chance in all RO

according to the angular difference between training and test se

for all angles in all ROIs. No significant differences were found
the difference in angle between training and test sets. For

instance, performance from training on stimuli with a ¼ 60�

and testing on stimuli with a ¼ 90� would be averaged with

performance obtained from training on stimuli with a ¼ 90�

and testing on stimuli with a ¼ 120�, etc. (i.e., a difference of

D ¼ 30� between training and test set). A repeated-measures

ANOVA was then performed per ROI to investigate differ-

ences in decoding accuracy across these angular differences.

3.2. Results

3.2.1. Multivariate pattern analysis
In the first analysis, a classifier was trained and tested using a

leave-one-run-out procedure on the pooled data sets, where

stimuli in each set contained the same pattern direction, but

differed with respect to the angles that separated the

component motion directions. The classifier was able to

decode the two pattern directions significantly above chance

in all ROIs (V1: 78.2%, V2: 77.1%, V3A: 63.6%, hMTþ/V5: 66.8%;

all p < .001; see Fig. 2A).

In subsequent cross-classification analyses, we trained on

stimulus pairs with the same a, and tested on stimulus pairs

with a different a. We found significant above-chance

decoding performance for all Ds in all ROIs [V1: 71.7% (D30�),
69.4% (D60�), 69.5% (D90�); V2: 73.6% (D30�), 70.2% (D60�), 72.1%
(D90�); V3A: 58.6% (D30�), 57.5% (D60�), 62.1% (D90�); hMTþ/V5:

57.9% (D30�), 56.4% (D60�), 59.1% (D90�); all p< .001; see Fig. 2B].

Furthermore, a repeated-measures ANOVA showed no sig-

nificant differences in decoding performance across the

different cross-classification scenarios in any of the ROIs [V1:

F(2,26) ¼ 1.06, p ¼ .36; V2: F(2,26) ¼ 3.1, p ¼ .06; V3A:

F(2,12) ¼ 1.59, p ¼ .24; hMTþ/V5: F(2,26) ¼ 2.15, p ¼ .14].

3.2.2. Eye tracking
Due to technical difficulties, no usable eye tracking data were

obtained for one participant. For two other participants, eye

tracking data were available for seven and nine runs, respec-

tively. One subject was excluded due to frequent eye closure

during scanning that could not be attributed to blinking. The

fixation analysis showed that no other participants met the

exclusion criteria. Our subsequent analysis used a Kolmo-

goroveSmirnoff test of the distributions of the eye movement

directions, which revealed no significant difference in eye

movements between the pattern motion trial types for any of
%. Error bars denote SEM. (A) The two pattern motion

Is. (B) Cross-classification decoding performance is pooled

t (D). Decoding performance was significantly above chance

between angles.

http://dx.doi.org/10.1016/j.cortex.2014.04.014
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the participants (all p > .9). Data from a representative subject

are shown in Fig. 3.
4. Experiment 2

In Experiment 1, we hypothesised that cross-classifications

between stimuli with different angles between the compo-

nent motion directions (a) should show a graded drop in

decoding accuracy if the classifier used component motion

information to classify the test data. However, despite the

varying a, all components that induced the same pattern di-

rection in Experiment 1 moved in directions deviating no

more than 75� from the pattern direction. This makes it still

possible that neurons activated by the components of these

separate stimuli had overlapping tuning curves, causing

above-chance cross-classification. Hence, to further ensure

that decoding performance was not based on component

motion information, we conducted an additional control

experiment. Here, wemanipulated the perception of our plaid

stimuli so that either the individual components or the

pattern was perceived. Our aim was to show that generalisa-

tion of classifier performance across different values of a

would be significantly lower if patternmotionwas not present

in the stimulus. This finding would rule out any dependence

of component motion signals on successful pattern motion

decoding in V1, as observed in Experiment 1. Our experiment

used the two extreme a values from Experiment 1 (60� and

150�) to further avoid an overlap in tuning curves between the

component motions in each stimulus set.
4.1. Material and methods

4.1.1. Participants
Thirteen participants with normal or corrected-to-normal

vision, of which 10 had also participated in the previous

experiment, were invited to take part in this control experi-

ment. Four participants did not perceive the stimuli as

intended and were excluded (see 4.1.3 Procedure). Thus, the

data of nine subjects are presented (three male, six female,

age 19e30, mean age 26, all right handed).
Fig. 3 e Eyemovements for each pattern direction. Example from

(45�). The directions of all eye movements were sorted into 30 b

showed that the distributions for the two pattern directions did
4.1.2. Stimuli
For the purpose of inducing component motion perception

(i.e., motion transparency), we closely matched the stimulus

properties of the previous experiment but used two square

wave gratings, as opposed to sine-wave gratings (Castelo-

Branco et al., 2002). We also presented all stimuli dichopti-

cally through a custom made setup (Schurger, 2009) for the

purposes detailed below. This meant that stimuli were

considerably smaller than those presented in Experiment 1

(annulus of 7.4� of visual angle). In each decoding set (i.e., A vs

B), plaids were composed of gratings with a ¼ 60� or a ¼ 150�,
where their vector average was either motion to the left (180�,
case A) or motion to the right (0�, case B). The individual

gratings had a spatial frequency of .5 cpd, a duty cycle .3, and a

speed of 1 cycle/sec. The term duty cycle refers to the pro-

portion of the width of the darker bars within one cycle of the

grating. To enhance the perceptual segmentation of compo-

nent motion within these plaid stimuli, we also manipulated

the luminance of each grating so that they differed (i.e.,

1401 cd/m2, and 739 cd/m2). Furthermore, a binocular

disparity shift was added such that the components were

displaced by .3� across the two eyes, with motion direction at

the crossed or uncrossed disparities being counter-balanced

equally for each condition. Stimuli that were supposed to be

perceived as patterns were presented dichoptically without a

disparity shift. Since these stimuli nonetheless elicited bista-

ble perception, instead of pure pattern motion percepts, we

brightened the intersections of components (2012 cd/m2) to

enhance pattern motion perception. Thus, for the two

opposing ‘pattern’ motion directions (i.e., left vs right, or A vs

B), a total set of eight different types of plaid stimuli were

generated, which varied in the possible angles defining the

components’ motion directions (60� and 150�) and whether

they were perceived as patterns or components (Fig. 4).

4.1.3. Procedure
In order to establish whether the perceptual manipulation,

i.e., component motion perception versus pattern motion

perception, was successful, participants were subjected to a

pre- and post-scan behavioural test in which they had to

indicate their percept. Each test consisted of 40 trials (five per
a representative subject for pattern direction A (225�) and B

ins for each pattern direction. A KolmogoroveSmirnoff test

not significantly differ.

http://dx.doi.org/10.1016/j.cortex.2014.04.014
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stimulus type), which were presented in pseudo-randomised

order. After each trial, participants indicated whether they

perceived one or two motion directions, or a mixture of these

percepts (i.e., pattern motion, component motion, or bistable

perception between component and patternmotion). This test

was conducted in the scanner bore, before the start and at the

end of the scanning session. Participants who perceived more

than 12.5% (i.e., 10 trials) of the total 80 trials differently to that

intendedwere excluded. From two participants, the data from

the pre-scan test were lost due to a technical issue; however

they perceived 13.75% and 25% of the total number of trials

differently than intended in the post-scan test alone, which

already sufficed for exclusion. Two other participants

perceived a total of 17.5% and 15% differently than intended,

respectively, leading to a total of four excluded participants.

After the initial pre-scan test, participants completed 10

runs of the main experiment. Each run consisted of 24 trials
(three per stimulus type), presented in pseudo-randomised

order. As in Experiment 1, participants had to detect a

colour change of the fixation cross and a small speed change

of the plaid stimuli, which occurred at random time intervals.

Eye tracking was performed to ensure proper fixation. Addi-

tional stimulus localisers and retinotopic mapping scans were

performed as described above (see Experiment 1). Two par-

ticipants were not available for the further eccentricity map-

ping. Thus V3A could only be defined in seven participants. V1

and hMTþ/V5 were defined in all nine participants.

4.1.4. Multivariate pattern analysis
Cross-classifications were performed between the two

component stimulus types (a ¼ 60� and a ¼ 150�) and be-

tween the two pattern stimulus types (a ¼ 60� and a ¼ 150�),
that is, the classifier was trained on stimuli with a ¼ 60� and

tested on stimuli with a ¼ 150�, and vice versa, for

http://dx.doi.org/10.1016/j.cortex.2014.04.014
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component and pattern stimulus types separately (Fig. 4).

Since there were no systematic differences in disparity for

any pair of conditions that were decoded against each other,

the disparity cue was uninformative to the classifier algo-

rithms for differentiating these conditions. To determine

whether the cross-classifications were significantly above

chance, permutation testing was conducted using the pro-

cedure described earlier (3.1.4 Multivariate Pattern Analysis).

Using a paired t-test, the cross-classification performance for

components was compared with cross-classification perfor-

mance for patterns.

4.2. Results

4.2.1. Multivariate pattern analysis
Cross-classification of stimuli perceived as single patterns,

differing in their component motions, yielded significant

above-chance decoding performance in all ROIs (V1: 71.9%,

p < .001; V2: 69.4%, p < .001; V3A: 62.9%, p < .001; hMTþ/V5:

54.2%, p ¼ .015; Fig. 5). Cross-classification of similar stimuli

perceived as two separate motion components led to chance-

level decoding in V3A and hMTþ/V5 (V3A: 49.6%, p ¼ .6;

hMTþ/V5: 49.7%, p ¼ .53), and significant above-chance

decoding in V1 (55%, p ¼ .008) and V2 (55.3%, p ¼ .004).

Although the cross-classification of components yielded weak

but significant above-chance decoding performance in V1 and

V2, decoding accuracy was significantly lower compared to

the performance in the cross-classification of patterns (both

p ¼ .003).

4.2.2. Eye tracking
Due to technical difficulties, no usable eye tracking data were

obtained for four participants. For another participant, eye

tracking data were available for seven runs. The fixation

analysis showed that no participant met the exclusion

criteria. Our subsequent analysis used a Kolmogor-

oveSmirnoff test of the distributions of the directions of eye

movements made during leftward and rightward trials. This

test revealed no significant difference in eye movements

between the two trial types for any of the participants (all

p > .9).
Fig. 5 e Decoding performance Experiment 2. Chance level is 50%

on plaids perceived as patterns yielded significant above-chanc

across angles on plaids perceived as components resulted in cha

above-chance decoding performance in V1 and V2. There was

component stimuli compared to pattern stimuli in V1, V2, and
5. Discussion

Our results demonstrate the presence of information about

patternmotion direction in neural activity in V1.Wewere able

to decode pattern motion from data sets that contained

stimuli with the same pattern direction, but different

component directions. Subsequent cross-classifications be-

tween stimuli with different a also yielded significant above-

chance decoding of pattern motion direction, and no graded

decline in decoding performance was observed as the differ-

ence between a increased over training and test set. Thus, our

findings suggest that successful pattern motion decoding

generalises across component directions and is largely

component-direction invariant. By manipulating perception

of the plaid stimuli in Experiment 2 we provided further evi-

dence that our classifier did not use component motion in-

formation to decode our stimuli. Here, cross-classification

between trials perceived as patterns again yielded significant

above-chance decoding performance, whereas decoding ac-

curacies weremarkedly lower when stimuli were perceived as

components. Since a similar drop in accuracy was not

observed in the cross-classifications in Experiment 1, our

result suggests that successful decoding of pattern motion in

V1 is based on pattern direction information and not on

overlapping tuning curves for the component motions. Eye

tracking analyses also ruled out any contribution of eye

movements to these results.

Our findings are in contrast to several studies that did not

find evidence for patternmotion processing in V1. While most

evidence from electrophysiology demonstrates a lack of

pattern-selective cells in primary visual cortex (Gizzi et al.,

1990; Movshon et al., 1985; Movshon & Newsome, 1996;

Rodman & Albright, 1989; Rust et al., 2006), some studies

have provided contradictory evidence: For instance, Guo et al.

(2004) observed pattern motion responses in V1 of awake

monkeys. Furthermore, Pack et al. (2003) found that the

preferred motion direction of end-stopped cells in V1 was

independent of the orientation of the presented bar, sug-

gesting that V1 might contribute to solving the aperture

problem (van Wezel & van der Smagt, 2003). Tinsley et al.
. Error bars denote SEM. Cross-classifications across angles

e decoding performance in all ROIs. Cross-classifications

nce-level decoding performance in V3A and hMTD/V5, and

a significant drop in performance when cross-classifying

V3A.
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(2003) also reported that a subset of V1 neurons with short,

wide receptive field sizes in themarmoset monkey respond to

the pattern direction of a moving plaid stimulus. While these

electrophysiological findings are in line with our data, a pre-

vious fMRI study in humans using an fMRI adaptation para-

digm found pattern motion responses throughout the visual

cortex from V2 onwards, but not in V1 (Huk & Heeger, 2002).

Similarly, other studies have not found pattern motion ac-

tivity in V1 but in higher-level visual areas (Castelo-Branco

et al., 2002; Villeneuve et al., 2005, 2012). The discrepancy

between these findings and our present data could be due to

the superior sensitivity of current MVPA methodology over

univariate approaches (Epstein & Morgan, 2012; Sapountzis,

Schluppeck, Bowtell, & Peirce, 2010). In particular, univariate

statistics test one voxel at a time, or rely on averaging across

voxels, whereasmulti-voxel pattern analysis takes patterns of

activity into account (Haynes & Rees, 2006; Norman et al.,

2006). Furthermore, MVPA potentially captures other

neuronal properties than fMRI adaptation (Epstein & Morgan,

2012; Sapountzis et al., 2010), the method used by Huk and

Heeger (2002). MVPA is thus likely to be more sensitive to

subtle differences in activity patterns, andmay therefore have

been able to detect information that was not observed before

with univariate methods.

The logic underlying our cross-classification analyses,

where a classifier was asked to generalise across varying

angular differences between the component motion di-

rections, was based on the current knowledge of tuning curves

of direction-selective cells. Direction-selective cells respond

maximally to their preferred direction. The more the motion

direction of a stimulus deviates from the preferred stimulus,

the weaker the neural response to that stimulus will be.

Studies measuring tuning curves for direction-selective cells

in V1 report varying tuning widths (width of the resultant di-

rection tuning curve at half of its maximumheight), which are

usually no greater than about 90� (Gizzi et al., 1990; Movshon

et al., 1985; Movshon & Newsome, 1996). Thus, a stimulus

that moves in a direction 45� away from a cell’s preferred di-

rection will elicit a neural response that is about half of the

response to the preferred stimulus. In our experiments, a

ranged from 60� to 150�, leading to a maximal angular differ-

ence between training and test set of 90�. Thus, each compo-

nent in the stimulus with a ¼ 150� is moving in a direction 45�

away from the direction of the components in the stimulus

with a ¼ 60�. Direction-selective cells responding maximally

to the components in the plaid with a ¼ 60� should therefore

show a substantially reduced response, namely approxi-

mately half of the maximal response, to the components in

the plaid with a ¼ 150�. Since our classifier could decode the

pattern direction regardless of the angle between the com-

ponents e and especially since there was no drop in decoding

accuracy for cross-classifications across increasing angular

differences e this suggests that component motion informa-

tion did not inform the classifier on its decision. Rather, our

results indicate that pattern motion signals were the infor-

mative feature to allow for the successful decoding of pattern

motion direction in our stimuli. Crucially, in our second

experiment, a generalisation across a yielded a significantly

lower decoding performance when trained and tested on

stimuli perceived as components compared to cross-
classifications of stimuli perceived as patterns. This shows

that the classifier could not have used component motion

information to generalise across a in our first experiment,

since there we did not observe a significant drop in decoding

accuracy with such cross-classifications.

It should be noted that there are physical stimulus differ-

ences between the component and pattern conditions in

Experiment 2. The stimuli that were perceived as patterns had

bright intersections, whereas these intersections were absent

in trials perceived as components. Thus, it is possible that our

classifier used neural responses to the motion of these in-

tersections, which have the same direction as the global

pattern, to decode pattern direction in Experiment 2. Whilst

this is an important point concerning the interpretation of a

drop in classifier performance between pattern and compo-

nent motion conditions, it should be stressed that classifiers

in Experiment 1 could successfully generalise across pattern

motion stimuli whose components differed by the same

values of a (i.e., D90�) without this change in intersection

luminance. These results render it unlikely that the high

cross-classification performance for pattern stimuli in

Experiment 2 was solely based on luminance differences of

the intersections. Indeed the possibility that intersections

may drive pattern motion responses is an argument

commonly discussed in pattern motion studies. However, to

date there is no consensus about the role of intersections in

pattern motion perception. On one hand, there is evidence

suggesting that tracking of local features such as intersections

plays a role in patternmotion processing (Alais,Wenderoth, &

Burke, 1997; Bowns, 1996; Delicato, Serrano-Pedraza, Suero, &

Derrington, 2012; Wenderoth, Alais, Burke, & van der Zwan,

1994). On the other hand, there is evidence suggesting that

pattern motion processing is not based on feature tracking

mechanisms (Bowns, 2013).Whilst the experiments presented

here were not designed to clarify the role of intersections in

pattern motion processing, they do suggest that successful

cross-classification of pattern motion stimuli in V1 could not

be based on the decoding of the separatemotion components,

since this factor did not change with our stimulus manipula-

tions from Experiment 1 to Experiment 2.

It is known that early visual cortex receives feedback pro-

jections fromhigher visual areas (Felleman&Van Essen, 1991).

Since pattern-selective cells have been foundmainly in higher

visual areas, there is a strong likelihood that the pattern mo-

tion information we observed in V1 was a result of feedback.

Indeed, anelectrophysiological studyby Pack, Berezovskii, and

Born (2001) supports this possibility. These authors observed a

change in neural responses of pattern-selective cells over

time, with the initial response resembling component selec-

tivity, before switching to a strong pattern selective response.

This integration of component motion information was

markedly impaired in anaesthetised animals, suggesting that

feedback processes play a role in resolving ambiguous local

motion information (Pack et al., 2001). Guo et al. also argued

that patternmotion activity in V1may depend on higher-level

information integration mechanisms, such as feedback, that

require consciousness, since they observed pattern motion

responses in V1 only in awake but not anaesthetisedmonkeys

(Guo et al., 2004). Furthermore, an optical imaging study that

temporarily deactivated neural responses in the cat’s
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homologue of area MT (Schmidt, Lomber, Payne, & Galuske,

2011) showed that neural responses in areas 17 and 18 asso-

ciated with patternmotion perception were reduced, whereas

responses associated with component perception remained

unaffected. Furthermore, these responses recovered when

deactivation of this area was reversed. Such findings suggest

that activity in low-level visual areas that is evoked by pattern

motion may depend on feedback from higher-level visual

areas (Schmidt et al., 2011). However, it is unclear from our

study whether the pattern motion information found in

human V1 is due to feedback signals from higher-level areas.

Since feedback from higher visual areas to V1 also plays an

important role in human visual perception (e.g., Silvanto,

Lavie, & Walsh, 2005), this is a realistic scenario. Future

studies that investigate the role of feedback signals in the

processing of pattern motion in V1 will provide insight.

Taken together, using fMRI andMVPAwe present evidence

for the presence of direction-specific pattern motion infor-

mation in V1. This finding suggests that V1 contributes to

pattern motion processing in humans.
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